

Special thanks to our Sponsors: Eric Zagorski, Charles Griffiths, Susan Behroozi, & Patricia Buchanan

OVERVIEW

Problem: Baristas can feel overwhelmed due to complex beverage recipes or equipment.

Goal: Provide Starbucks with a methodology to factor complexity into R&D decisions.

Outputs

Complexity Score:

% chance a beverage will be ranked more complex than another

Ranking of equipment complexity

Financial Impact | Yearly Magnitude*

R&D Costs

\$30M

\$120M

Turnover Costs \$4,000,000/yr*

Potentially Saved

*Due to the proprietary nature of Starbucks' financials, the true values have been multiplied by a scalar between 0 to 1

Current State

Unknown Complexity Indicators

Overwhelming o training period

Future State

Unburdened (baristas

Quantified Complexity Indicators

Survey Analysis

Goal: Identify and rank factors in Starbucks beverage recipes based on their difficulty in use

Method: Survey baristas to attain a ranked list of 20 beverages, then analyze different factors to observe their impact on rankings

DATA COLLECTION

Survey

Factor Compilation

DATA ANALYSIS

ANOVA

Pairwise Factor Analysis

Product Survey Complexity Scores

Variance Analysis

Goal: Explore the relationship between

production time variance and drink complexity

Assumption: Larger variance means higher chance of complexity in the process

DATA COLLECTION

TAMS Database

DATA ANALYSIS

Data Cleaning

Pivot Table & Chart

Variance Score

Learnability Analysis

Goal: Ranking Starbucks equipment based on their difficulty to learn

DATA COLLECTION

TAMS Database

DATA ANALYSIS

Inexperienced Barista Cycle Time Testing

TAMS Database Comparisons

Equipment List Creation

ANOVA With Equipment Factors

Experienced vs Inexperienced Time Differences*

*Frappuccinos & teas were unable to be tested due to equipment constraints

Analysis

Complexity Ranking Predictors

Factor

Step Count

Variance Learnability* 0.66 0.69

0.35

Kendall Coef.

*The Learnability route was constrained by the equipment available for testing, resulting in fewer data points. Further analysis required

Complexity Score = $\beta_0 + \beta_1(SC) + \beta_2(VAR)$

 β_0 , β_1 , β_2 = Coefficient Scalars SC = Step Count VAR = Variance

Equipment Complexity Rankings

Our routes produced consistent significant factors of complexity in terms of equipment

Comparison of Actual vs Predicted Scores 60 —Predicted Score

Simple Complex

2- Shaker

3- Syrup Pump

1- Frappuccino Blender

2- Clover Vertica

3- Caramel Drizzle

1- Mastrena 2 Shots

Recommendations

1- Expanding Data Collection:

Larger study sizes allow for more accurate analysis methods. Regularly updated data increases relevance

2- Continuous Tracking System:

Implementing real-time tracking of drink preparation times

3- Versatile Framework:

Our methodologies are applicable to various tasks beyond beverage production, such as food and preparation processes

